Basic System Models

Consider the following situation. A microprocessor switches on a motor.
How will the rotation of the motor shaft vary with time? The speed will not
immediately assume the full-speed value but will only attain that speed after
some time. Consider another situation. A hydraulic system is used to open a
valve which allows water into a tank to restore the water level to that
required. How will the water level vary with time? The water level will not
immediately assume the required level but will only attain that level after
some time.

In order to understand the behaviour of systems, mathematical models
are needed. These are simplified representations of certain aspects of a real
system. Such a model is created using equations to describe the relationship
between the input and output of a system and can then be used to enable pre-
dictions to be made of the behaviour of a system under specific conditions,
e.g. the outputs for a given set of inputs, or the outputs if a particular para-
meter is changed. In devising a mathematical model of a system it is neces-
sary to make assumptions and simplifications and a balance has to be chosen
between simplicity of the model and the need for it to represent the actual
real-world behaviour. For example, we might form a mathematical model for
a spring by assuming that the extension x is proportional to the applied force
F, i.e. F = kx. This simplified model might not accurately predict the
behaviour of a real spring where the extension might not be precisely propor-
tional to the force and where we cannot apply this model regardless of the
size of the force, since large forces will permanently deform the spring and
might even break it and this is not predicted by the simple model.

The basis for any mathematical model is provided by the fundamental
physical laws that govern the behaviour of the system. In this chapter a range
of systems will be considered, including mechanical, electrical, thermal and
fluid examples.

Like a child building houses, cars, cranes, etc., from a number of basic
building blocks, systems can be made up from a range of building blocks.
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Each building block is considered to have a single property or function.
Thus, to take a simple example, an electric circuit system may be made up
from building blocks which represent the behaviour of resistors, capacitors
and inductors. The resistor building block is assumed to have purely the
property of resistance, the capacitor purely that of capacitance and the
inductor purely that of inductance. By combining these building blocks in
different ways, a variety of electric circuit systems can be built up and the
overall input/output relationships obtained for the system by combining in
an appropriate way the relationships for the building blocks. Thus a mathe-
matical model for the system can be obtained. A system built up in this way
is called a lumped parameter system. This is because each parameter, i.e.
property or function, is considered independently.

There are similarities in the behaviour of building blocks used in mechan-
ical, electrical, thermal and fluid systems. This chapter is about the basic
building blocks and their combination to produce mathematical models for
physical, real, systems. Chapter 11 looks at more complex models. It needs to
be emphasised that such models are only aids in system design. Real systems
often exhibit non-linear characteristics and can depart from the ideal models
developed in these chapters. This matter is touched on in Chapter 11.

The models used to represent mechanical systems have the basic building

- blocks of springs, dashpots and masses. Springs represent the stiffness of a
system, dashpots the forces opposing motion, i.e. frictional or damping
effects, and masses the inertia or resistance to acceleration (Figure 10.1). The
mechanical system.does not have to be really made up of springs, dashpots
and masses but have the properties of stiffness, damping and inertia. All
these building blocks can be considered to have a force as an input and a
displacement as an output.

The stiffness of a spring is described by the relationship between the
forces F used to extend or compress a.spring and the resulting extension or
compressmn x (Flgure 10.1(a)). In the case of a sprmg where the extension
or compression is proportional to the applied forces, i.e. a linear spring,

F=Fkx

where £ is a constant. The bigger the value of £, the greater the forces have
to be to stretch or compress the spring and so the greater the stiffness. The
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Figure 10.1 Mechanical systems: (a) spring, (b) dashpot, (c) mass
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object applying the force to stretch the spring is also acted on by a force, the
force being that exerted by the stretched spring (Newton’s third law). This
force will be in the opposite direction and equal in size to the force used to
stretch the spring, i.e. kx,

The dashpot building block represents the types of forces experienced
when we endeavour to push an object through a fluid or move an object
against frictional forces. The faster the object is pushed, the greater the
opposing forces become. The dashpot which is used pictorially to represent
these damping forces which slow down moving objects consists of a piston
moving in a closed cylinder (Figure 10.1(b)). Movement of the piston
requires the fluid on one side of the piston to flow through or past the
piston. This flow produces a resistive force. In the ideal case, the damping or
resistive force F is proportional to the velocity v of the piston. Thus

F=¢v

where ¢ is a constant. The larger the value of ¢, the greater the damping force
at a particular velocity. Since velocity is the rate of change of displacement x
of the piston, i.e. v = dx/ds, then
dx

F=¢ &
Thus the relationship between the displacement x of the piston, i.e. the out-
put, and the force as the input is a relationship depending on the rate of
change of the output.

The mass building block (Figure 10.1(c)) exhibits the property that the
bigger the mass, the greater the force required to give it a specific accelera-
tion. The relationship between the force F and the acceleration 2 is
(Newton’s' second law) F = ma, where the constant of proportionality
between the force and the acceleration is the constant called the mass m.
Acceleration is the rate of change of velocity, i.e. dv/dz, and velocity v is the
rate of change of displacement , i.e. v = dx/dz. Thus ’

P d(de/dr)  d%
ma=mo = m— o — mdt2

Energy is needed to stretch the spring, accelerate the mass and move the
piston in the dashpot. However, in the case of the spring and the mass we can
get the energy back but with the dashpot we cannot. The spring when
stretched stores energy, the energy being released when the spring springs
back 1o its original length. The energy stored when there is an extension x is
%kxz. Since F = kx this can be written as

1 F?
E =
2k
There is also energy stored in the mass when it is moving with a velocity v, the
energy being referred to as kinetic energy, and released when it stops moving:
1 5

=-2-mv

However, there is no energy stored in the dashpot. It does not return to iis
original position when there is no force input. The dashpot dissipates energy
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rather than storing it, the power P dissipated depending on the velocity v and
being given by

P =t

- Rotational systems

The spring, dashpot and mass are the basic building blocks for mechanical
systems where forces and straight line displacements are involved without
any rotation. If there is rotation then the equivalent three building blocks are
a torsional spring, a rotary damper and the moment of inertia, i.e. the
inertia of a rotating mass. With such building blocks the inputs are torque and
the outputs angle rotated. With a torsional spring the angle 6 rotated is
proportional to the torque 7. Hence

T =k

With the rotary damper a disc is rotated in a fluid and the resistive torque T
is proportional to the angular velocity w, and since angular velocity is the rate
at which angle changes, i.e. d4/dz,

de
T = = po—
=
The moment of inertia building block has the property that the greater the
moment of inertia /, the greater the torque needed to produce an angular
acceleration a:

T = Il

Thus, since angular acceleration is the rate of change of angular velocity, i.e.
dw/dz, and angular velocity is the rate of change of angular displacement,
then

d(dg/d: %0
dr d a#
. The torsional spring and the rotating mass store energy; the rotary
t damper just dissipates energy. The energy stored by a torsional spring when

I twisted through an angle 8 is %k@z and since T = @ this can be written as
i

‘ E=——

2 &

! The energy stored by a mass rotating with an angular velocity w is the kinetic
lenergy E, where

E = %I w?
| The power P dissipated by the rotatory damper when rotating with an angular
velocity w is

P =

Table 10.1 summarises the equations defining the characteristics of !:he
mechanical building blocks when there is, in the case of straight line
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Table 10.1 Mechanical
building blocks,

Figure 10.2 (a) Spring—
dashpot-mass, (b) system,
(c) free-body diagram.

Energy stored or

Building block Describing equation power dissipated
Translational
Spring ‘ F= ks p=1E
. 2k
dx
Dashpot F=::Et-=w P=pnt
2
Mass F=mg—{=m-d—v E=-1-mv2
) dr de 2
Rotational
1772
Spri T = = =
pring #6 E 7 %
. dé 2
Rotational damper T = c-&}- = ¢ P=w
a0 4 1
Moment of inertia T=17= IE‘% E=2 L'

displacements (termed transiational), a force input F and a displacement x
output and, in the case of rotation, a torque 7 and angular displacement &,

m Bullding: up a mechanical system

Many systems can be considered to be essentially 2 mass, a spring and dash-
pot combined in the way shown in Figure 10.2(a) and having an input of a
force F and an output of displacement x (Figure 10.2(b)). To evaluate the
relationship between the force and displacement for the system, the proce-
dure to be adopted is to consider just one mass, and just the forces acting on
that body. A diagram of the mass and just the forces acting on it is called a
free-body diagram (Figure 10.2(c)).

‘When several forces act concurrently on a body, their single equivalent
resultant can be found by vector addition. If the forces are all acting along
the same line or parallel lines, this means that the resultant or net force act-
ing on the block is the algebraic sum. Thus for the mass in Figure 10.2(c), if
we consider just the forces acting on that block then the net force applied to

Force due to spring
el

Force due

Force due (48
to dashpot

Force due to dashpot

(a) {c}
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Figure 10.3 Mode!l for (a) a
machine mounted on the ground,
(b) the chassis of a car as a result
of a wheel moving along a road,
(c)thedriverof acarasitis
driven along a road.

the mass is the applied force F minus the force resulting from the stretching
or compressing of the spring and minus the force from the damper. Thus

net force applied tomassm = F — kx — cv

where v is the velocity with which the piston in the dashpot, and hence the
mass, is moving. This net force is the force applied to the mass to cause it to
accelerate, Thus

net force applied to mass = ma

Hence
dix
F by — = py——
kx — ¢ Pk a7
or, when rearranged,
d’x dx
— 4t e——+ kx = F
m a2 ¢ d bx

This equation, called a differential equation, describes the relationship
between the input of force F to the system and the output of displacement x.
Because of the d%x/d# term, it is a second-order differential equation; a first-
order differential equation would only have dx/dz.

There are many systems which can be built up from suitable combinations
of the spring, dashpot and mass building blocks. Figure 10.3 illustrates some.

Figure 10.3(a) shows the model for a machine mounted on the ground and
could be used as a basis for studying the effects of ground disturbances on the
displacements of a machine bed. Figure 10.3(b) shows a model for the wheel
and its suspension for a car or truck and can be used for the study of the

Quipur, displacement

Quiput, displacement

Suspension

@ Road

Input, force
() ) ©

o 1
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Displacement &
Figure 10.4 Example.

behaviour that could be expected of the vehicle when driven over a rough road
and hence as a basis for the design of the vehicle suspension. Figure 10.3(c)
shows how this model can be used as part of a larger model to predict how the
driver might feel when driven along a road. The procedure to be adopted for
the analysis of such models is just the same as outlined above for the simple
spring—dashpot-mass model. A free-body diagram is drawn for each mass in
the system, such diagrams showing each mass independently and just the
forces acting on it. Then for each mass the resultant of the forces acting on it
is equated to the product of the mass and the acceleration of the mass.

o illustrate the above, consider the derivation of the differential equation
describing the relationship between the input of the force F and the output
of displacement x for the system shown in Figure 10.4.

The net force applied to the mass is F minus the resisting forces exerted
by each of the springs. Since these are kyx and &y, then

net force = F — b — ko

Since the net force causes the mass to accelerate, then

&
net force = m—
d
Hence
2
mSE e = F

de

The procedure fé;- obtaining the differential equation relating the inputs
and outputs for a mechanical system consisting of a number of components
can be summarised as:

1 Isolate the various components in the system and draw free-body
diagrams for each.

2 Hence, with the forces identified for a component, write the modelling
equation for it.

3 Combine the equations for the various system components to obtain the
system differential equation.

As an illustration, consider the derivation of the differential equation
describing the motion of the mass m,; in Figure 10.5(a) when a force F is
applied. Consider the free-body diagrams (Figure 10.5(b)). For mass m,
these are the force F and the force exerted by the upper spring. The force
exerted by the upper spring is due to its being stretched by (v, — #3) and so
is B(x; — x,). Thus the net force acting on the mass is

net force = F — by{x; — x3)
This force will cause the mass to accelerate and so
F — by ) = s
- —_ = gy
AX3 T ¥ 274

For the free-body diagram for mass ;, the force exerted by the upper
spring is £;(x3 — ¥,) and that by the lower spring is k(%) — x7). Thus the
net force acting on the mass is

net force = ky(x; — x1) = kfx; — %)
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Figure 10.5 Mass—spring
system,

Figure 10.6 Rotating a mass
on the end of a shaft:

(a) physical situation,

(b) building block model.

Force exerted -
by upper spring

Force exerted
by upper spring

Force exerted
by lower spring

® {®)

This force will cause the mass to accelerate and so
dzxg
ky(xy — xy) — kplxs — %) = "

We thus have two simultaneous second-order differential equations to
describe the behaviours of the system.

Similar models can be constructed for rotating systems. To evaluate the
relationship between the torque and angular displacement for the system
the procedure to be adopted is to consider just one rotational mass block,
and just the torques acting on that body. When several torques act on a body
simultaneously, their single equivalent resultant can be found by addition
in which the direction of the torques is taken into account. Thus a
system involving a torque being used to rotate a mass on the end of a shaft
(Figure 10.6(a)) can be considered to be represented by the rotational build-
ing blocks shown in Figure 10.6(b). This is a comparable situation with that
analysed above (Figure 10.2) for linear displacements and yields a similar
equation

d%e de
F—4+c—+ k=T
a2 = s
Angular Torsional

resistance

Torsional  Moment
resistance  of inertia 7

(x ®)
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Figure 10.7 Electrical building
blocks.

The basic building blocks of electrical systems are inductors, capacitors and
resistors (Figure 10.7).

-‘»P v -i-.’. k] _{) (2
el N
= =
C

L

For an inductor the potential difference v across it at any instant depends
on the rate of change of current (di/ds) through it:

= L=
VTR

where L is the inductance. The direction of the potential difference is in the
opposite direction to the potential difference used to drive the current
through the inductor, hence the term back em.f. The equation can be
rearranged to give

i=}1,:/pdt

For a capacitor, the potential difference across it depends on the charge
¢ on the capacitor plates at the instant concerned:

v=£
C

where C is the capacitance. Since the current  to or from the capacitor is the

“rate at which charge moves to or from the capacitor plates, i.e. i = dg/ds,

then the total charge 7 on the plates is given by

q=/id:
s0
1
v=6/idz‘

Alternatively, since v = g/C then

and

v _1dg_ 1

d Cdt C
and so

. v

z—-—Cdt

For a resistor, the potential difference v across it at any instant depends
on the current { through it

v = Ri

where R is the resistance.
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Table 10.2 Electrical building
blocks.

o4 c Tvc
Applied
voltage

Figure 10.8
Resistor~capacitor system.

Both the inductor and capacitor store energy which can then be released
at a later time. A resistor does not store energy but just dissipates it. The
energy stored by an inductor when there is a current { is

E= —%L;Z

The energy stored by a capacitor when there is a potential difference v across
it is

1
E=—Cv
5C

The power P dissipated by a resistor when there is a potential difference v
across it is

P =iy = —
W=
Table 10.2 summarises the equations defining the characteristics of the
electrical building blocks when the input is current and the output is poten-
tial difference. Compare them with the equations given in Table 10.1 for the
mechanical system building blocks.

Energy stored or
Building block Describing equation power dissipated
Inductor =L foar E=1L?
s H T ¥ 2 2
dé
w= J
YT
dv 1
. e SV = 2
Capacitor i=C & E S <Y
. i v o
Resistor i=z =2

u Buliding up a model for an electrical system

The equations describing how the electrical building blocks can be combined
are Kirchhoff ’s laws. These can be expressed as:

Law l: the total current flowing towards a junction is equal to the total
current flowing from that junction, i.e. the algebraic sum of the
currents at the junction is zero.

T.aw 2: in a closed circuit or loop, the algebraic sum of the potential
differences across each part of the circuit is equal to the applied
em.f.

Now consider a simple electrical system consisting of a resistor and capac-
itor in series, as shown in Figure 10.8. Applying Kirchhoff ’s second law to
the circuit loop gives

v =1vg + v¢c
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Figure 10.9
Resistor—-inductor—capacitor
systemn.

Figure 10.10
Resistor-inductor system.

where vg is the potential difference across the resistor and v that across the
capacitor. Since this is just a single loop, the current i through all the circuit
elements will be the same, If the output from the circuit is the potential
difference across the capacitor, v, then since vg = iR and i = C(dv/de),

dc

dt

This gives the relationship between the output v and the input v and is a
first-order differential equation.

Figure 10.9 shows a resistor—inductor—capacitor system. If Kirchhoff’s
second law is applied to this circuit loop,

v = RC + vg

v=yp+ vy, + oy

i R L
T pre—) 7YY ™Y

i—o
2 T c T”C
Applied
voltage

where vy is the potential difference across the resistor, vy, that across the
inductor and v that across the capacitor. Since there is just a single loop, the
current { will be the same through all circuit elements. If the output from
the circuit is the potential difference across the capacitor, v, then since
vg = fR and vy = L(di/dD)

X di
v=:R+L:i-;+vc

But i = C(dvc/dr) and so
di _ Cd(dvc/dt) _ Cdzvc
dt de dr

Hence

dVC dZVc
= M4 Rl S
v=ROZE+LCF+ v

This is a second-order differential equation.

As a further illustration, consider the relationship between the output, the
potential difference across the inductor of vy, and the input v for the circuit
shown in Figure 10.10. Applying Kirchhoff’s second law to the circuit loop
gives

v=vg +

where v is the potential difference across the resistor R and vy, that across
the inductor. Since vg = iR,

vy =ik + v

1
;=;{—,/de:

Since
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Figure 10.11
Resistor—capacitor-inductor
system.

Figure 10.12 Analogous
systems.

then the relationship between the input and output is

v—!—{/ (it+

Asvfmother example, consider the relationship between the output, the
potenuf\l difference v across the capacitor, and the input v for the circuit
shown in Figure 10.11. Applying Kirchhoff’s law 1 to node A gives

il = iz + i3
But

, V™ Vs

= R

1

1, = z va dz

) dva

5=C%
Hence

R dt

But v = v,. Hence, with some rearrangement,

- d
v VAx—I‘/VAd?'{'C"E&
L
dVC R
v=RC~at—+vc+~z/vcdt

2 Electrical and mechanical analogies

“ The building blocks for electrical and mechanical systems have many simi-

larities (Figure 10.12). For example, the electrical resistor does not store
energy but dissipates it, with the current i through the resistor being given
by i = v/R, where R is a constant, and the power P dissipated by P = v¥/R.
The mechanical analogue of the resistor is the dashpot. It also does not store
energy but dissipates it, with the force F being related to the velocity v by
F = ¢v, where ¢ is a constant, and the power P dissipated by P = o*. Both
these sets of equations have similar forms. Comparing them, and taking the cur-
rent as being analogous to the force, then the potential difference is analogous

Force due to spring
e

P
Force due to dashpot

(2)
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1o the velocity and the dashpot constant ¢ to the reciprocal of the resistance,
ie. (1/R). These analogies between current and force, potential difference
and velocity, hold for the other duilding biocks widh the spring boing analo-
gous to inductance and mass to capacitance.

The mechanical system in Figure 10.1(a) and the electrical system in
Figure 10.1(b) have input/output relationships described by similar differ-
ential equations:

d*s dx dve dzvc

g + = e —— =
mdtz cdt kx = F and RCdt+LCd:2+vC v

The analogy between current and force is the one most often used.
However, another set of analogies can be drawn between potential difference
and force.

— -

In fluid flow systems there are three basic building blocks which can be
considered to be the equivalent of electrical resistance, capacitance and
inductance. Fluid systems can be considered to fall into two categories:
hydraulic, where the fluid is a liguid and is deemed to be incompressible; and
pneumatic, where it is a gas which can be compressed and consequently
shows a density change.

Hydraulic resistance is the resistance 1o flow which occurs as a result of
a liquid flowing through valves or changes in a pipe diameter (Figure 10.13(a)).
The relationship between the volume rate of flow of liquid ¢ through the
resistance element and the resulting pressure difference (p; — p,) is

h—pn=Rg

where R is a constant called the hydraulic resistance. The bigger the resist-
ance, the bigger the pressure difference for a given rate of flow. This equa-
fion, like that for the electrical resistance and Ohm’s law, assumes a linear
relationship, Such hydraulic linear resistances occur with orderly flow
through capillary tubes and porous plugs but non-linear resistances occur
with flow through sharp-edged orifices or if flow is turbulent.

_ Hydraulic capacitance is the term used to describe energy storage with
a liquid where it is stored in the form of potential energy. A height of liquid
in a container (Figure 10.13(b)), i.. a so-called pressure head, is one form of

e Cross-sectional
, o N *ﬂ area A
. \ f} 2 , N
_ \ | A "‘ i \
¢ ‘  Cross-sectional | Mass }
{ i -
Valve ; Fx=i’14: — :FZ:PZA
— . | |
Dy m— = Dy 1{4——————-————-—»{‘
L

@

) 0]

Figure 10.13 Hydraulic examples: (a) resistance, (b} capacitance, {c) inertance.




L R R Y I L

b e e ¥

"oy

«a

LR TR o

10.4 FLUID SYSTEM BUILDING BLOCKS 231

such a storage. For such a capacitance, the rate of change of volume Vin the
container, i.e. d7/ds, is equal to the difference between the volumetric rate
at which liquid enters the container ¢; and the rate at which it leaves 42,

dV

ﬂ“fh—‘g{

But ¥ = Ah, where A is the cross-sectional area of the container and % the
height of liquid in it. Hence
d(A4h) dh
= A

dt dz
But the pressure difference between the input and output is p, ‘where
p = hpg with p being the liquid density and g the acceleration due to grav-
ity. Thus, if the liquid is assumed to be incompressible, i.c. its density does
not change with pressure,

_ Slee) A dp

a " =

U] dz pg dt
The hydraulic capacitance C is defined as being
A
C=—
g
Thus
dp
n-a=Cqy

Integration of this equation gives

1
? =‘6/(41 = q)dt

Hydraulic inertance is the equivalent of inductance in electrical sys- j
tems or a spring in mechanical systems. To accelerate a fluid and so increase
its velocity, a force is required. Consider a block of liquid of mass m
(Figure 10.13(c)). The net force acting on the liquid is

Fi—F=pnd-pA=(p —pA

where (p; — ;) is the pressure difference and A the cross-sectiona! area.
This net force causes the mass to accelerate with an acceleration 4, and so

(7 — p2)A = ma
But 2 is the rate of change of velocity dv/d¢, hence
dv

(g —p)A = "™

But the mass of liquid concerned has a volume of AL, where L is the length
of the block of liquid or the distance between the points in the liquid where
the pressures p; and p, are measured. If the liquid has a density p then
m = ALp and so

dv
(p1 — p2)A = ALp &
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But the volume rate of flow 4 = Av, hence

dg
(h—mA=1Lp ”

dg
- o I_....
o P T
where the hydraulic inertance [ is defined as
L
=2
A

With pneumatic systems the three basic building blocks are, as with
hydraulic systems, resistance, capacitance and inertance. However, gases
differ from liquids in being compressible, i.c. a change in pressure causes a
change in volume and hence density. Pneumatic resistance R is defined in
terms of the mass rate of flow dm/ds (note that this is often written as an m
with a dot above it to indicate that the symbol refers to the mass rate of flow
and not just the mass) and the pressure difference (p; ~ p,) as

dm .
n PZ“Rd:'*R’??

Pneumatic capacitance C is due to the compressibility of the gas, and
is comparable with the way in which the compression of a spring stores
energy. If there is 2 mass rate of flow dem;/d: entering a container of volume
Vand a mass rate of flow of dm,/dt leaving it, then the rate at which the mass
in the container is changing is (dm,/dt — dm,/dr). If the gas in the container
has a density p then the rate of change of mass in the container is

d(p?)
dr

But, because a gas can be compressed, both p and ¥ can vary with time.
Hence ‘ - '

rate of change of mass in container =

do
dz
Since (d¥/de) = (dV/dp)(dp/ds} and, for an ideal gas, p¥ = mRT with
consequently p = (m/V)RT = pRT and dp/dt = (1/RT)dp/d?), then

dv dp Vv dp
Pt

dp dr | RT dt

where R is the gas constant and 7" the temperature, assumed to be constant,
on the Kelvin scale. Thus

%_i’@_(éﬁﬁ)ég
a  a \Pa RrRT) @

The pneumatic capacitance due to the change in volume of the container C;
is defined as

dv
rate of change of mass in container = p m +

rate of change of mass in container =

dav
G = P‘é;
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and the pneurnatic capacitance due to the compressibility of the gas C, as

_r
2T RT
Hence
dmy dm, _ dp
dr dz G+ G d
or

i . .
h—p= C+ CZ/(ml = my)dt

Pneumatic inertance is due to the pressure drop necessary to acceler-
ate a block of gas. According to Newton’s second law, the net force is
ma = d(mv)/ds. Since the force is provided by the pressure difference
(71 — p3), then if A is the cross-sectional area of the block of gas being
accelerated

d(mv)
ds

But m, the mass of the gas being accelerated, equals pL.4 with p being the
gas density and L the length of the block of gas being accelerated. And the
volume rate of flow g = A4v, where v is the velocity. Thus

(7 ~p)A=

my = pLA:i— = plg

and so
_ dipg)
(1 —p2)A =L dr
But m = pgand so
_, = Ldn
h— A dr
dm
— = [—
2 ) &

with the pneumatic inertance  being I = L/A.

Table 10.3 shows the basic characteristics of the fluid building blocks,
both hydraulic and pneumatic.

For hydraulics the volumetric rate of flow and for pneumatics the mass
rate of flow are analogous to the electric current in an electrical system. For
both hydraulics and pneumatics the pressure difference is analogous to the
potential difference in electrical systems, Compare Table 10.3 with Table 10.2.
Hydraulic and pneumatic inertance and capacitance are both energy storage
elements; hydraulic and pneumatic resistance are both energy dissipaters.

- Building up a model for a fluid system

Figure 10.14 shows a simple hydraulic system, a liquid entering and leaving
a container. Such a system can be considered to consist of a capacitor, the liquid
in the container, with a resistor, the valve,
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Table 10.3 Hydraulic and
pneumatic building blocks

Figure 10.14 A fluid system.

Energy stored or
Building block Describing equation power dissipated
Hydraulic
1 1
Inertance qg= Ef(pl = fp)dt E= Elqz
dg
p=L
Ao — :
Capacitance 9= C—(’l’—&h@ = 10(?; - )
t Z
. 5T D 1
Resistance ==p =2 (51 — 22Y
Prcumatic
.1
Inertance m=- f (py — p2)dt =L
L 2
d —_
Capacitance = C*(?lvﬁ")' = 16(?1 -n)
dr 2
. ., P 1
Resistance o= R P = "Rg‘(?l - )

Inertance can be neglected since flow rates change only very slowly. For
the capacitor we can write

The rate at which liquid leaves the container ¢; equals the rate at which it
leaves the valve. Thus for the resistor

n—t =Ry

The pressure difference (p; — ;) is the pressure due to the height of liquid
in the container and is thus kpg. Thus ¢, = kpg/R and so substituting for ¢,
in the first equation gives

_ heg _ o dpg)
n R - de
and, since C = A/pg,
dk  pgh
= f— 4+
41 dr R

This equation describes how the height of liquid in the container depends on
the rate of input of liquid into the container.
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b ot
Displacement

Figure 10.15 A pneumatic
system.

A bellows is an example of a simple pneumatic system (F: igure 10.15).
Resistance is provided by a constriction which restricts the rate of flow of gas
into the bellows and capacitance is provided by the bellows itself. Inertance
can be neglected since the flow rate changes only slowly.

‘The mass flow rate into the bellows is given by

2~ p2 =R
where py is the pressure prior to the constriction and p, the pressure after the
constriction, i.e. the pressure in the bellows. All the gas that flows into

the bellows remains in the bellows, there being no exit from the bellows. The
capacitance of the bellows is given by

. . dp
my —my = (G + Cz)'(‘l;2

The mass flow rare entering the bellows is given by the equation for the
resistance and the mass leaving the bellows is zero. Thus

iy 7 dp,
f-SA . o . e £z
R (C, + C) ar

Hence
_ , dp,
= RGO+ G dr + 2

This equation describes how the pressure in the bellows p, varies with time
when there is an input of a pressure p,.

The bellows expands or contracts as a result of pressure changes inside it.
Bellows are just a form of spring and so we can write F = kx for the relation-
ship between the force F causing an expansion or contraction and the result-
ing displacement x, where % is the spring constant for the bellows. But the
force F depends on the pressure g3, with p, = F/A4 where A is the cross-
sectional area of the bellows. Thus 4 = F = kx. Hence substituting for p,
in the above equation gives

Edx &

7= R(C + Cz)};? o

This equation, a first-order differential equation, describes how the exten-

sion or contraction x of the bellows changes with time when there is an input

of a pressure p;. The pneumatic capacitance due to the change in volume of

the container C, is pd¥/dp, and since V' = Azx, C, is pA dx/dp,. But for the
bellows pp4 = kx, thus

. dx pA?
=i~ &

C,;, the pneumatic capacitance due to the compressibility of the air, is
V/RT = Ax/RT. .

The following illustrates how, for the hydraulic system shown in
Figure 10.16, relationships can be derived which describe how the heights
of the liquids in the two containers will change with time. With this model
inertance is neglected.
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Figure 10.16 A fluid system.

Container 1 is a capacitor and thus

dp
— — C .,
TN Vi
where p = hypg and C; = A,/pg and so
dhy
0= Ay

The rate at which liquid leaves the container ¢, equals the rate at which it
leaves the valve R,. Thus for the resistor,

=R,
The pressures are kypg and hypg. Thus

(b1 — h)pg = Rigy
Using the value of ¢, given by this equation and substituting it into the
earlier equation gives
_-(hl“hz)szAéfl_
Ul """""‘RI - 4
This equation describes how the height of the liquid in container 1 depends
on the input rate of flow.

For container 2 a similar set of equations can be derived. Thus for the
capacitor C,,

dp
— = (y—
] 74
where p = hypg and C, = A,/pg and so
dh,
— - A i
L7 ] LR

The rate at which liquid leaves the container g; equals the rate at which it
leaves the valve R;. Thus for the resistor,

P2 —0=Rp

This assumes that the liquid exits into the atmosphere. Thus, using the value
of ¢; given by this equation-and substituting it into the earlier equation gives
hapg dh,
g - 22

= Ayt
R, 2
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Sul?stimting for g; in this equation using the value given by the equation
derived for the first container gives

(h — mlpg _ hapg _ 4 dh,
Rl R2 2 de
This equation describes how the height of liquid in container 2 changes.

P

There are only two basic building blocks for thermal systems: resistance and
capacitance. There is a net flow of heat between two peints if there is a tem-
perature difference between them. The electrical equivalent of this is that
there is only a net current 7 between two points if there is a potential differ-
ence v between them, the relationship between the current and potential
difference being ¢ = v/R, where R is the electrical resistance between the
points, A similar relationship can be used to define thermal resistance R.
If g is the rate of flow of heat and (7} — 73) the temperature difference, then

-1
R

The value of the resistance depends on the mode of heat transfer. In the case
of conduction through a solid, for unidirectional conduction
I, - T;

L

q:

g = Ak

where A is the cross-sectional area of the material through which the heat is

being conducted and L the length of material between the points at which the
temperatures are T; and T7; % is the thermal conductivity. Hence, with this
mode of heat transfer,

L
R=—
Ak
When the mode of heat transfer is convection, as with liquids and gases, then
g = AT, — Ty)

where A is the surface area across which there is the temperature difference
and 4 is the coefficient of heat transfer. Thus, with this mode of heat transfer,

1
Ah
Thermal capacitance is a measure of the store of internal energy in a

system. Thus, if the rate of flow of heat into a system is ¢; and the rate of flow
out is g7, then

rate of change of internal energy = ¢; — ¢z
An increase in internal energy means an increase in temperature. Since
internal energy change = m¢ X change in temperature
where m is the mass and ¢ the specific heat capacity, then

rate of change of internal energy = mc X rate of change of
temperature
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Table 10.4 Thermal building
blocks.

Figure 10.17 A thermal
system.

Thus
dar

i B R m“&t‘
where d7/dr is the rate of change of temperature. This equation can be
written as
dT
- 0p=0C dr

where C is the thermal capacitance and so C = me. Table 10.4 gives a
summary of the thermal building blocks.

Building block Describing equation Energy stored

Capacitance R C-c-ld; E=CT
n-rT

Resistance g= ,J._R;.._%

B Building up a modei for a thermal system

Consider a thermometer at temperature T which has just been inserted into
a liquid at temperature Ty (Figure 10.17).

If the thermal resistance to heat flow from the liquid to the thermometer
is R, then

i
7R

where ¢ is the net rate of heat flow from liquid to thermometer. The thermal
capacitance C of the thermometer is given by the equation

n-a=Cr
Since there is only a net flow of heat from the liquid to the thermometer,
1 = qand g, = 0. Thus
d7
1=C5
Substituting this value of g in the earlier equation gives
dTr Ty~ T
@ R
Rearranging this equation gives
dT
dar
This equation, a first-order differential equation, describes how the temperature
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Ty T @
Y2
@
Figure 10.18 Thermal
system,

indicated by the thermometer T will vary with time when the thermometer
is inserted into a hot liquid.

In the above thermal system the parameters have been considered to be
lumped. This means, for example, that there has been assumed to be just one
temperature for the thermometer and just one for the liquid, i.e. the temper-
atures are only functions of time and not position within a body.

To illustrate the above consider Figure 10.18 which shows a thermal sys-
tem consisting of an electric fire in a room. The fire emits heat at the rate ¢,
and the room loses heat at the rate ¢,. Assuming that the air in the room is at
a uniform temperature T and that there is no heat storage in the walls of the
room, derive an equation describing how the room temperature will change
with time.

If the air in the room has a thermal capacity C then

daTr
f—qp= Cdt

If the temperature inside the room is 7 and that outside the room 7T} then

_T-T,

42 R

where R is the resistivity of the walls. Substituting for ¢, gives
T— T4 dT
= C’-——-
R d:

i

Hence

dT
RC"&;" + T = qu -+ Tg

A mathematical model of a system is a description of it in terms of equa-
tions relating inputs and outputs so that outputs can be predicted from
inputs.

Mechanical systems can be considered to be made up from masses,
springs and dashpots, or moments of inertia, springs and rotational dampers
if rotational. Electrical systems can be considered to be made up from resis-
tors, capacitors and inductors, hydraulic and pneumatic systems from resist-
ance, capacitance and inertance, and thermal systems from resistance and
capacitance.

There are many elements in mechanical, electrical, fluid and thermal sys-
tems which have similar behaviours. Thus, for example, mass in mechanical
systems has similar properties to capacitance in electrical systems, capaci-
tance in fluid systems and capacitance in thermal systems. Table 10.5 shows
a comparison of the elements in each of these systems and their defining
equations.
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Table 10.5 System elements.

Mechanical Mechanical :
(translational) (rotational)  Electrical Fluid (bydraulic) Thermal
Eiement Mass Moment of Capacitor Capacitor Capacitor
inertia
. dx d’9
uation F=m— T=[—
Eq ds as
dv dw ) dv d(pr — 22) aT
F = —_— T = J— E= e = P ol — =
™ar Ta =0y 170 o a=Cy
1 1, 1 i 2
Energy E= Emvz =Sl = ‘ECVZ E=-Ch —p) E=CT
Element Spring Spring Inductor Inertance None
. di dg
Equation F=k T = = f2 = Fd
q £ k0 v=L - p= L ar
1 F? 172 1 1
Ener E=—— E == E = ~LZ = —Jgt
By 2k 2k o E=Rle
Element Dashpot Rotational Resistor Resistance Resistance
damper
. dx a6 v NP -1
E L1 S el ] Te=—= = — e O .
quation F = Frals Cq T @ =0 R q R
Power P=ut P = o P=—vf =‘1‘(P - ny
R T2

10.1

Figure 10.19 Problem 10.1.

10.2
10.3
104
Figure 10.20
Problem 10.3.

Derive an equation relating the input, force F, with the output, displacement
x, for the systems degeribed by Figure 10.19.

| . b
Displacement & 2 Displacement x
® S o®

Propose a model for the metal wheel of a railway carriage running on a metal
track.

Derive an equation relating the input angular displacement 8; with the out-
put angular displacement 8, for the rotational system shown in Figure 10.20.
Propose a model for a stepped shaft (i.e. a shaft where there is a step change

in diameter) used to rotate a mass and derive an equation relating the input
torque and the angular rotation. You may neglect damping.
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10.5

10.6

A

Figure 10.21 Problem 10.5.

10.7
10.8
Figure 10.24
Problem 10.8.
10.9
10.10
Figure 10.25

Problem 10.10.

Derive.the relationship between the output, the potential difference across
the' resistor R of vy, and the input v for the circuit shown in Figure 10.21
which has a resistor in series with a capacitor.

Derive the relationship between the output, the potential difference across
th_e resistor 2 of ve. and the input v for the series LCR circuit shown in
Figure 10.22.

Figure 10.22 Problem 10.6.

Figure 10.23 Problem 10.7.

Derive the relationship between the output, the potential difference across
the capacitor C of v¢, and the input v for the circuit shown in Figure 10.23.

Derive the relationship between the height #, and time for the hydraulic
system shown in Figure 10.24. Neglect inertance,

Cross-sectional Cross-sectional
Constant

head supply ﬂ ¢ area A area A
ﬂ Y H 3

v
SO

A hot object, capacitance C and temperature 7, cools in a large room at tem-
perature T,. If the thermal system has a resistance R, derive an equation
describing how the temperature of the hot object changes with time and give
an electrical analogue of the system.

Figure 10.25 shows a thermal system involving two compartments, with one
containing a heater. If the temperature of the compartment containing the
heater is T;, the temperature of the other compartment 75 and the temper-
ature surrounding the compartments 73, develop equations describing how

. T?; 16‘3
| ]

7 7
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Figure 10.26
Problem 10.12.

10.11

10.12

the temperatures 73 and 75 will vary with time. All the walls of the contain-
ers have the same resistance and negligible capacitance. The two containers
have the same capacitance C.

Derive the differential equation relating the pressure input p to a diaphragm
actuator (as in Figure 7.23) to the displacement x of the stem.

Derive the differential equation for a motor driving a load through a gear
system (Figure 10.26) which relates the angular displacement of the load
with time. .

-




