
10.1 
Consider the following situation. A microprocessor switches on a motor. 
How will the rotation of the motor shaft vary with time? The speed will not 
immediately assume the full-speed value but will only attain that speed after 
some time. Consider another situation. A hydraulic system is used to open a 
valve which allows water into a tank to restore the water level to that 
required. How will the water level vary with time? The water level will not 
immediately assume the required level but will only attain that level after 
some time. 

In order to understand the behaviour of systems, mathematical models 
are needed. These are simplified representations of certain aspects of a real 
system. Such a model is created using equations to describe the relationship 
between the input and output of a system and can then be used to enable pre­
dictions to be made of the behaviour of a system under specific conditions, 
e.g. the outputs for a given set of inputs, or the outputs if a particular para­
meter is changed. In devising a mathematical model of a system it is neces­
sary to make assumptions and simplifications and a balance has to be chosen 
between simplicity of the model and the need for it to represent the actual 
real-world behaviour. For example, we might form a mathematical model for 
a spring by assuming that the extension x is proportional to the applied force 
F, i.e. F = kx. This simplified model might not accurately predict the 
behaviour of a real spring where the extension might not be precisely propor­
tional to the force and where we cannot apply this model regardless of the 
size of the force, since large forces will permanently deform the spring and 
might even break it and this is not predicted by the simple model. 

The basis for any mathematical model is provided by the fundamental 
physical laws that govern the behaviour of the system. In this chapter a range 
of systems will be considered, including mechanical, electrical, thermal and 
fluid examples. 

Like a child building houses, cars, cranes, etc., from a number of basic 
building blocks, systems can be made up from a range of building blocks. 
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Each building block is considered to have a single property or function. 
Thus, to take a simple example, an electric circuit system may be made up 
from building blocks which represent the behaviour of resistors, capacitors 
and inductors. The resistor building block is assumed to have purely the 
property of resistance, the capacitor purely that of capacitance and the 
inductor purely that of inductance. By combining these building blocks in 
different ways, a variety of electric circuit systems can be built up and the 
overall input/output relationships obtained for the system by combining in 
an appropriate way the relationships for the building blocks. Thus a mathe­
matical model for the system can be obtained. A system built up in this way 
is called a lumped paraIlleter system. This is because each parameter, i.e. 
property or function,.is considered independently. 

There are similarities in the behaviour of building blocks used in mechan­
ical, electrical, thermal and fluid systems. This chapter is about the basic 
building blocks and their combination to produce mathematical models for 
physical, real, systems. Chapter 11 looks at more complex models. It needs to 
be emphasised that such models are only aids in system design. Real systems 
often exhibit non-linear characteristics and can depart from the ideal models 
developed in these chapters. This matter is touched on in Chapter 11. 

The models used to represent mechanical systems have the basic building 
blocks of springs, dash pots and masses. Springs represent the stiffness of a 
system, dashpots the forces opposing motion, i.e. frictional or damping 
effects, and Illasses the inertia or resistance to acceleration (Figure 10.1). The 
mechanical system does not have to be really made up of springs, dash pots 
and masses but have the properties of stiffness, damping and inertia. All 
these building blocks can be considered to have a force as an input and a 
displacement as an output. . 

The stiffness of a spring is described by the relationship between the 
forces F used to extend or compress a,spring and the resulting extension or 
compression x (Figure 1O.1(a». In the case of a spring where the extension 
or compression is proportional to the applied forces, i.e. a linear spring, 

F = kx 

where k is a constant. The bigger the value of k, the greater the forces have 
to be to stretch or compress the spring and so the greater the stiffness. The 
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object applying the force to stretch the spring is also acted on by a force, the 
force being that exerted by the stretched spring (Newton's third law). This 
force will be in the opposite direction and equal in size to the force used to 
stretch the spring, Le. kx. 

The dashpot building block represents the types of forces experienced 
when we endeavour to push an object through a fluid or move an object 
against frictional forces. The faster the object is pushed, the greater the 
opposing forces become. The dashpot which is used pictorially to represent 
these damping forces which slow down moving objects consists of a piston 
moving in a closed cylinder (Figure 10. I(b». Movement of the piston 
requires the fluid on one side of the piston to flow through or past the 
piston. This flow produces a resistive force. In the ideal case, the damping or 
resistive force F is proportional to the velocity v of the piston. Thus 

F= cv 

where c is a constant. The larger the value of c, the greater the damping force 
at a particular velocity. Since velocity is the rate of change of displacement x 
of the piston, i.e. v = dx/dt, then 

dx
F= e­

dt 

Thus the relationship between the displacement x of the piston, i.e. the out­
put, and the force as the input is a relationship depending on the rate of 
change of the output. 

The mass building block (Figure lO.1(c» exhibits the property that the 
bigger the mass, the greater the force required to give it a specific accelera­
tion. The relationship between the force F and the acceleration a is 
(Newton's' second law) F = ma, where the constant of proportionality 
between the force and the acceleration is the constant called the mass m. 
Acceleration is the rate of change of velocity, i.e. dv/dt, and velocity v is the 
rate of change of displacement x, i.e. v = dx/dt. Thus 

dv d(dx/dt) d2x 
F = ma = m- = m = m­

dt dt dr 

Energy is needed to stretch the spring, accelerate the mass and move the 
piston in the dashpot. However, in the case of the spring and the mass we can 
get the energy back but with the dashpot we cannot. The spring when 
stretched stores energy, the energy being released when the spring springs 
back to its original length. The energy stored when there is an extension x is 
~k~. Since F kx this can be written as 

1 F2 
E=-­

2 k 

There is also energy stored in the mass when it is moving with a velocity v, the 
energy being referred to as kinetic energy, and released when it stops moving: 

1 2E = -mv
2 

However, there is no energy stored in the dashpot. It does not return to its 
original position when there is no force input. The dashpot dissipates energy 
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rather than storing it, the power P dissipated depending on the velocity v and 
being given by 

P = ctl­

_ Rotational systems 

The spring, dashpot and mass are the basic building blocks for mechanical 
systems where forces and straight line displacements are involved without 
any rotation. If there is rotation then the equivalent three building blocks are 
a torsional spring, a rotary damper and the rn.orn.ent of inertia, i.e. the 
inertia ofa rotating mass. With such building blocks the inputs are torque and 
the outputs angle rotated. With a torsional spring the angle 0 rotated is 
proportional to the torque T. Hence 

T = kO 

With the rotary damper a disc is rotated in a fluid and the resistive torque T 
is proportional to the angular velocity w, and since angular velocity is the rate 
at which angle changes, i.e. dO/dt, 

dO
T cw = e­

dt 

The moment of inertia building block has the property that the greater the 
moment of inertia f, the greater the torque needed to produce an angular 
acceleration a: 

T= fa 

Thus, since angular acceleration is the rate of change of angular velocity, i.e. 
dw/dt, and angular velocity is the rate of change of angular displacement, 
then 

dw d(dO/dt) d20 
T=J-=J =J­

dt dt dr 

The torsional spring and the rotating mass store energy; the rotary 
t damper just dissipates energy. The energy stored by a torsional spring when 
i twisted through an angle 0 is !k(J2 and since T = k(J this can be written as 

I T2 

E = 2 k 


The energy stored by a mass rotating with an angular velocity w is the kinetic 
energy E, where 

E = !.fw2 
2 

: The power P dissipated by the rotatory damper when rotating with an angular 
velocity w is 

2P = cw

Table 10.1 summarises the equations defining the characteristics of the 
mechanical building blocks when there is, in the case of straight line 
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Tallie 10.1 Mechanical 
building blocks. Energy stored or 

Building block Describing equation power dissipated 

Figure 10.2 (a) Spring­
dashpot-mass, (b) system, 
(c) free-body diagram. 
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displacements (termed translational), a force input F and a displacement x 
output and, in the case of rotation, a torque T and angular displacement fJ. 

_ Building up a mechanical system 

Many systems can be considered to be essentially a mass, a spring and dash­
pot combined in the way shown in Figure lO.2(a) and having an input of a 
force F and an output of displac~ment x (Figure lO.2(b». To evaluate the 
relationship between the force and displacement for the system, the proce­
dure to be adopted is to consider just one mass, and just the forces acting on 
that body. A diagram of the mass and just the forces acting on it is called a 
free-body diagram (Figure lO.2(c». 

When several forces act concurrently on a body, their single equivalent 
resultant can be found by vector addition. If the forces are all acting along 
the same line or parallel lines, this means that the resultant or net force act­
ing on the block is the algebraic sum. Thus for the mass in Figure lO.2(c), if 
we consider just the forces acting on that block then the net force applied to 
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Figure 10.3 Model for (a) a 
machine mounted on the ground, 
(b) the chassis of a car as a result 
of a wheel moving along a road, 
(c) the driver of a car as it is 
driven along a road. 

the mass is the applied force F minus the force resulting from the stretching 
or compressing of the spring and minus the force from the damper. Thus 

net force applied to mass m = F - kx - cv 

where v is the velocity with which the piston in the dashpot, and hence the 
mass, is moving. This net force is the force applied to the mass to cause it to 
accelerate. Thus 

net force applied to mass = ma 

Hence 

dx d2x
F - kx - c- = m­

dt dr2 

or, when rearranged, 

d2x dx 
m-+c-+kx=F 

dr2 dt 

This equation, called a differential equation, describes the relationship 
between the input of force F to the system and the output of displacement x. 
Because of the d2x/dr2 term, it is a second-order differential equation; a first­
order differential equation would only have dx/dt. 

There are many systems which can be built up from suitable combinations 
of the spring, dashpot and mass building blocks. Figure 10.3 illustrates some. 

Figure 1O.3(a) shows the model for a machine mounted on the ground and 
could be used asa basis for studying the effects of ground disturbances on the 
displacements of a machine bed. Figure lO.3(b) shows a model for the wheel 
and its suspension for a car or truck and can be used for the study of the 
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Figure 10.4 Example. 

behaviour that could be expected of the vehicle when driven over a rough road 
and hence as a basis for the design of the vehicle suspension. Figure 1O.3(c) 
shows how this model ~ be used as part ofa larger model to predict how the 
driver might feel when driven along a road. The procedure to be adopted for 
the analysis of such models is just the same as outlined above for the simple 
spring-dashpot-mass model A free-body diagram is drawn for each mass in 
the system, such diagrams showing each mass independently and just the 
forces acting on it. Then for each mass the resultant of the forces acting on it 
is equated to the product of the mass and the acceleration of the mass. 

To illustrate the above, consider the derivation of the differential equation 
describing the relationship between the input of the force F and the output 
of displacement x for the system shown in Figure lOA. 

The net force applied to the mass is F minus the resisting forces exerted 
by each of the springs. Since these are k1x and klx, then 

net force = F k1x k~ 

Since the net force causes the mass to accelerate, then 

dlx 
net force = m dr 

Hence 
d1x 


m dr + (kl + kl)x = F 


The procedure for obtaining the differential equation relating the inputs 
and outputs for a mechanical system consisting of a number of components 
can be summarised as: 

1 Isolate the various components in the system and draw free-body 
diagrams for each. 

2 Hence, with the forces identified for a component, write the modelling 
equation for it. 

3 Combine the equations for the various system components to obtain the 
system differential equation. 

As an illustration, consider the derivation of the differential equation 
describing the motion of the mass ml in Figure 1O.5(a) when a force F is 
applied. Consider the free-body diagrams (Figure 10.5(b». For mass ml 
these are the force F and the force exerted by the upper spring. The force 
exerted by the upper spring is due to its being stretched by (Xl X3) and so 
is kl (X3 Xl)' Thus the net force acting on the mass is 

net force = F - kl (X3 Xl) 

This force will cause the mass to accelerate and so 

dlX3 

F kl(X3 - Xl) = ml& 


For the free-body diagram for mass mh the force exerted by the upper 
spring is kl (X3 - Xl) and that by the lower spring is k1(Xl - Xl)' Thus the 
net force acting on the mass is 

net force kl(XI - XI) - kz(X3 - xz) 
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FilPlre 10.5 Mass-spring 
system. 

f"....re 10.6 Rotating a mass 
on the end ofa shaft: 

(a) physical situation, 
(b) building block model. 

(a) 
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(b) 

This force will cause the mass to accelerate and so 

d2
x2 


k1(X2 - X·l) - kZ(X3 XZ) = merle 

We thus have two simultaneous second-order differential equations to 

describe the behaviours of the system. 
Similar models can be constructed for rotating systems. To evaluate the 

relationship between the torque and angular displacement for the system 
the procedure to be adopted is to consider just one rotational mass block, 
and just the torques acting on that body. When several torques act on a body 
simultaneously, their single equivalent resultant can be found by addition 
in which the direction of the torques is taken into account. Thus a 
system involving a torque being used to rotate a mass on the end of a shaft 
(Figure 1O.6(a» can be considered to be represented by the rotational build­
ing blocks shown in Figure 1O.6(b). This is a comparable situation with that 
analysed above (Figure 10.2) for linear displacements and yields a similar 
equation 

d2e de 
Idr+ c dt+ k8 =T 

Torsional 
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Torque 
T 

Torsional Moment 
resistance of inertia I 
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Figure 10.7 Electrical building 
blocks. 

The basic building blocks of electrical systems are inductors, capacitors and 
resistors (Figure 10.7). 

. v ,'V , v 
: ~ '-....-.- , ­
~~~ 

R L c 

For an inductor the potential difference v across it at any instant depends 
on the rate of change of current (di/dt) through it; 

di
v=L­

dt 

where L is the inductance. The direction of the potential difference is in the 
opposite direction to the potential difference used to drive the current 
through the inductor, hence the term back e.m.f. The equation can be 
rearranged to give 

. 1/J = L vdt 

For a capacitor, the potential difference across it depends on the charge 
q on the capacitor plates at the instant concerned: 

q 
v =­

C 

where C is the capacitance. Since the current i to or from the capacitor is the 
. rate at which charge moves to or from the capacitor plates, i.e. i = dq/dt, 
then the total char~ q on the plates is given by 

q = / idt 

and so 

v = ~ / idt 

Alternatively, since v = q/C then 


dv 1 dq 1. 

-=--=-,
dt Cdt C 

and so 

dv 
C 

dt 

For a resistor, the potential difference v across it at any instant depends 
on the current i through it 

v = Ri 

where R is the resistance. 
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Table 10.2 Electrical building 
blocks. 

Both the inductor and capacitor store energy which can then be released 
at a later time. A resistor does not store energy but just dissipates it. The 
energy stored by an inductor when there is a current i is 

E= !Li 
2 

The energy stored by a capacitor when there is a potential difference v across 
it is 

E=!C~ 
2 

The power P dissipated by a resistor when there is a potential difference v 
across it is 

P=iv= ~ 
R 

Table 10.2 summarises the equations defining the characteristics of the 
electrical building blocks when the input is current and the output is poten­
tial difference. Compare them with the equations given in Table 10.1 for the 
mechanical system building blocks. 

Energy stored or 
Building block Describing equation power dissipated 

I .
Inductor i=±JVdt E = -LIz 

2 

di
v=L­

dt 

dv 
Capacitor i = C dt 

v 
Resistor 

R 	 R 

Fipre 10.8 
Resistor-capacitor system. 

_ Building up a model for an electrical system 

The equations describing how the electrical building blocks can be combined 
are Kirchhoff's laws. These can be expressed as: 

Law I: 	 the total current flowing towards a junction is equal to the total 
current flowing from that junction, i.e. the algebraic sum of the 
currents at the junction is zero. 

Law 2: 	 in a closed circuit or loop, the algebraic sum of the potential 
differences across each part of the circuit is equal to the applied 
e.m.£ 

Now consider a simple electrical system consisting of a resistor and capac­
itor in series, as shown in Figure 10.8. Applying Kirchhoff's second law to 
the circuit loop gives 

v = VR + Vc 
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Figure 10.9 
Resistor-inductor-capacitor 
system. 

F"lIUre 10.10 
Resistor-inductor system. 

where Va is the potential difference across the resistor and Vc that across the 
capacitor. Since this is just a single loop, the current i through all the circuit 
elements will be the· same. If the output from the circuit is the potential 
difference across the capacitor, vc, then since Va = iR and i = C(dvc/dt), 

dvc 
V = RCTt + Vc 

This gives the relationship between the output Vc and the input V and is a 
first-order differential equation. 

Figure 10.9 shows a resistor-inductor-capacitor system. If Kirchhoff's 
second law is applied to this circuit loop, 

v = va + VL + Vc 

vtf:]J-'-" 
\ 

R LeI" 
Applied 
voltAge '--________--' 

where V:R is the potential difference across the resistor, vL that across the 
inductor and Vc that across the capacitor. Since there is just a single loop, the 
current i will be the same. through all circuit elements. If the output from 
the circuit is the potential difference across the capacitor, vc, then since 
va = iR and Vr. = L(di/dt) 

di 
v = J'R + L- + Vc

dt 

But i= C(dvddt) and so 

di d(dvc/dt) d2vc 

dt = C dt = C dr 


Hence 

dvc d2vc 

V = RCTt + LC dr + Vc 


This is a second-order differential equation. 
As a further illustration, consider the relationship between the output, the 

potential difference across the inductor of VL, and the input v for the circuit 
shown in Figure 10.10. Applying Kirchhoff's second law to the circuit loop 
gives 

V::Va+VL 

where'Va is the potential difference across the resistor R and VL that across 
the inductor. Since Va = iR, 

V=iR+VL 

Since 



229 10.3 ELECTRICAL SYSTEM BUILDING BLOCKS 

B 

rllllre 10.11 
Resistor-capacitor-inductor 
system. 

figure 10.12 Analogous 
systems. 

then the relationship between the input and output is 

RJ ' v = L VLdt + VI-

As, another example, consider the relationship between the output, the 
potential difference Ve across the capacitor, and the input v for the circuit 
shown in Figure 10.11. Applying Kirchhoff's law 1 to node A gives 

il = i2 + i3 

But 

. v - vA 
·1 =--­

R 

Hence 

V VA 1 J dVA
-R- = L vAdt + C­

dt 

But Ve = VA' Hence, with some rearrangement, 

dve RJ 
v = RCTe + Ve + L ve dt 

Electrical and mechanical analogies 

The building blocks for electrical and mechanical systems have many simi­
larities (Figure 10.12). For example, the electrical resistor does not store 
energy but dissipates it, with the current i through the resistor being given 
by i = v/ R, where R is a constant, and the power P dissipated by P = v 

2
/ R. 

The mechanical analogue of the resistor is the dash pot. It also does not store 
energy but dissipates it, with the force F being related to the velocity v by 
F = cv, where c is a constant, and the power P dissipated by P = ~. Both 
these sets ofequations have similar forms. Comparing them, and taking the cur­
rent as being analogous to the force, then the potential difference is analogous 

Force due 1:0 spring 
~ 

~ 
Force due 10 dashpot 

(b)(a) 
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to the velocity and the dashpot constant c to the reciprocal of the resistance, 
i.e. (1/R). These analogies between current and force, potential difference 
and velocity, bold for me omer building blocks wim me spring being amuo­
gous to inductance and mass to capacitance. 

The mechanical system in Figure 1O.l(a) and the electrical system in 
Figure 1O.I(b) have input/output relationships described by similar differ­
ential equations: 

d2r dx 
m- + c- + kx = F and vdrZ dt 

The analogy between current and force is the one most often used. 
However, another set of analogies can be drawn between potential difference 
and force. 

In fluid flow system/l there are three basic building blocks which can be \: 

considered to be the equivalent of electrical resistance, capacitance and 

inductance. Fluid systems can be considered to fall into two categories: 

hydraulic, where the fluid is a liquid and is deemed to be incompressible; and 

pneumatic, where it is a gas which can be compressed and consequently 

shows a density change. 


Hydraulic resistance is the resistance to flow which occurs as a result of 
a liquid flowing through valves or changes in a pipe diameter (Figure 1O.l3(a». 
The relationship between the volume rate of flow of liquid q through the 
resistance element and the resulting pressure difference (Pl - 12) is 

PI-P2=Rq 

where R is a constant called the hydraulic resistance. The bigger the resist­
ance, the bigger the pressure difference for a given rate of flow. This equa­
tion, like that for the electrical resistance and Ohm's law, assumes a linear 
relationship. Such, hydraulic linear resistances occur with orderly flow 
through capillary tubes and porous plugs but non-linear resistances occur 
with flow through sharp-edged orifices or if flow is turbulent. 

Hydraulic capacitance is the term used to describe energy storage with 
a liquid where it is stored in the form of potential energy. A height of liquid 
in a container (Figure 1O.l3(b», i.e. a so-called pressure head, is one form of 

Cross-sectional 
area A 

\ 

\J 

1~areaA 
Cross-sectional I 

: Fz=PzA 
I 
I 

Valve 

PI­

(a> 

I 

--Pz 
L 

(b) (c) 

figure 10.13 Hydraulic examples: (a) resistance, (b) capacitance, (c) inertance. 
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such a storage. For such a capacitance, the rate of change of volume V in the 
container, i.e. dV/dt, is equal to the difference between the volumetric rate 
at which liquid enters the container ql and the rate at which it leaves q2, 

dV 
q! - q2 =­

dt 

But V Ah, where A is the cross-sectional area of the container and h the 
height of liquid in it. Hence 

d(Ah) dh 
qi qz = dt = A dt 

But the pressure difference between the input and output is p,where 
P = hpg with p being the liquid density and g the acceleration due to grav­
ity. Thus, if the liquid is assumed to be incompressible, i.e. its density does 
not change with pressure, 

d(P/pg) A dp
ql - qz = A--- = -­

dt pg dt 

The hydraulic capacitance C is defined as being 

A
C=­

pg 

Thus 

dp
ql - qz = C­

dt 

Integration of this equation gives 

P = ~J(ql - qz)dt 

Hydraulic inertance is the equivalent of inductance in electrical sys­
tems or a spring in mechanical systems. To accelerate a fluid and so increase 
its velocity, a force is required. Consider a block of liquid of mass m 
(Figure 10.13(c». The net force acting on the liquid is 

FI - F2 = PIA PzA = (PI Pz)A 

where (PI - Pz) is the pressure difference and A the cross-sectional area. 
This net force causes the mass to accelerate with an acceleration a, and so 

(PI - Pz)A = ma 

But a is the rate of change of velocity dv/dt, hence 

dv 
(PI - Pz)A = m dt 

,• 
· 

But the mass of liquid concerned has a volume ofAL, where L is the length 
of the block of liquid or the distance between the points in the liquid where 
the pressures PI and Pz are measured. If the liquid has a density p then 

~ 
I m = ALp and so· 
'l · dvI
• (Pt pz)A = ALp dt 

· 
•
ff 
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But the volume rate of flow q = Av, hence 

dq 

(PI - Pz)A = Lp dt 


dq 

PI - P2 = I dt 


where the hydraulic inertance I is defined as 

1= Lp 

A 


With pneumatic systems the three basic building blocks are, as with 
hydraulic systems, resistance, capacitance and inertance. However, gases 
differ from . liquids in being compressible, i.e. a change in pressure causes a 
change in volume and hence density. Pneumatic resistance R is defined in 
terms of the mass; rate of flow dm/dt (note that this is often written as an m 
with a dot above it to indicate that the symbol refers to the mass rate of flow 
and not just the mass) and the pressure difference (PI Pz) as 

dm . 
PI - Pz = R~ = Rm

dt . 

Pneumatic capacitance C is due to the compressibility of the gas, and 
is comparable with the way in which the compression of a spring stores 
energy. If there is a mass rate of flow dmJidt entering a container of volume 
Vand a mass rate offlow ofdmJdt leaving it, then the rate at which the mass 
in the container is changing is (dmJidt - dm2/dt). If the gas in the container 
has a density p then the rate of change of mass in the container is 

d(PV)
rate ofchange of mass in container = -­

dt 

But, because a gas can be compressed, both p and V can vary with time. 
Hence 

V dp. . dV 
rate of change 0 f mass m contamer = Pdt + de 

Since (dV/dt) = (dV/dp)(dp/dt) and, for an ideal gas, pV = mRT with 
consequently p = (m/V)RT = pRTand dp/dt = (I/R1)(dp/dt), then 

dVdp V dp 

rate of change ofmass in container = p dp dt + RT dt 


where R is the gas constant and T the temperature, assumed to be constant, 
on the Kelvin scale. Thus 

dml _ dmz = ( dV +~) dp 

dt dt P dp RT dt 


The pneumatic capacitance due to the change in volume of the container C) 
is defined as 

dV 
CI =p­

dp 
.' 
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and the pneumatic capacitance due to the compressibility of the gas C2 as 

V 
RT 

Hence 

dml dm2 dp
---=(C +C)­
dt dt I 2dt 

or 

Pneumatic inertance is due to the pressure drop necessary to acceler­
ate a block of gas. According to Newton's second law, the net force is 
rna = d(mv)/dt. Since the force is provided by the pressure difference 
(PI - Pz), then if A is the cross-sectional area of the block of gas being 
accelerated 

d(mv)
(PI - Pz)A = ----;It 

But m, the mass of the gas being accelerated, equals pLA with p being the 
gas density and L the length of the block of gas being accelerated. And the 
volume rate of flow q = Av, where v is the velocity. Thus 

mv pLA~ = pLq 

and so 

(PI - P2)A = 
d(pq)

L-­
dt 

But m = pq and so 

Ldm 
PI - P2 = A dt 

dni 
PI Pz = Idt 

with the pneumatic inertance I being I = L/A. 
Table 10.3 shQWs the basic characteristics of the fluid building blocks, 

both hydraulic and pneumatic. 
For hydraulics the volumetric rate of flow and for pneumatics the mass 

rate of flow are analogous to the electric current in an electrical system. For 
both hydraulics and pneumatics the pressure difference is analogous to the 
potential difference in electrical systems. Compare Table 10.3 with Table 10.2. 
Hydraulic and pneumatic inertance and capacitance are both energy storage 
elements; hydraulic and pneumatic resistance are both energy dissipaters. 

_ Building up a model for a fluid system 

Figure 10.14 shows a simple hydraulic system, a liquid entering and leaving 
a container. Such a system can be considered to consist ofa capacitor, the liquid 
in the container, with a resistor, the valve. 
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Table 10.3 Hydraulic and 
pneumatic building blocks Energy stored or 

Building block Describing equation power dissipated 

Hydraulic 

Inertance 

Capacitance 

Resistance 

Pneumatic 

Inertance 

Capacitance 

Resistance 

1 
q = ±/(Pl -P2)dt E = -Iiz 

dq 
P = L dt 

d(Pl - Pz) 1 
q=C~-~ E = "iC(PI - pd 

PI - Pz 1 z
q=-il P = R (Pt - Pz) 

. 1/ 
2

m = L (PI - pz)dt E= !Imz 

m= C~~Pz) 1 
dt E = "iC(PI pd 

• PI - pz 1 zm=-- P = R (PI - pz)
R 

figure 10.14 A fluid system. 

Cross-sectional 
area A 

Inertance can be neglected since flow rates change only very slowly. For 
the capacitor we can write 

dp 
ql qz = C dt 

The rate at which liquid leaves the container qz equals the rate at which it 
leaves the valve. Thus for the resistor 

PI - Pz = Rqz 

The pressure difference (PI - pz) is the pressure due to the height of liquid 
in the container and is thus hpg. Thus qz = hpg/R and so substituting for qz 
in the first equation gives 

hpg d(hpg) 
ql-R=C~ 

and, since C = A/pg, 

dh pgh
ql =A-+­

dt R 
This equation describes how the height ofliquid in the container depends on 
the rate of input of liquid into the container. 
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Area 
A 

--JOo­
Displacement :r 

Figure 10.15 A pneumatic 
system. 

A bellows is an example of a simple pneumatic system (Figure 10.15). 
Resistance is provided by a constriction which restricts the rate of flow of gas 
into the bellows and capacitance is provided by the bellows itseI£ Inertance 
can be neglected since the flow rate changes only slowly. 

The mass flow rate into the bellows is given by 

PI - P2 = Rm 

where PI is the pressure prior to the constriction and P2 the pressure after the 
constriction, i.e. the pressure in the bellows. All the gas that flows into 
the bellows remains in the bellows, there being no exit from the bellows. The 
capacitance of the bellows is given by 

ml - m2 = (GI + G2) dPz 

dt 


The mass flow rate entering the bellows is given by the equation for the 
resistance and the mass leaving the bellows is zero. Thus 

PI P2:::: (G + C) dP2 

R I 2 dt 


Hence 

PI 

This equation describes how the pressure in the bellows P2 varies with time 
when there is an input of a pressure PI' 

The bellows expands or contracts as a result of pressure changes inside it. 
Bellows are just a form ofspring and so we can write F = kx fur the relation­
ship between the force F causing an expansion or contraction and the result­
ing displacement x, where k is the spring constant for the bellows. But the 
force F depends on the pressure P2, with P2 = FIA where A is the cross­
sectional area of the bellows. Thus p~ = F :::: kx. Hence substituting for P2 
in the above equation gives 

k dx k 
PI = R(GI + Gz)-- +-x 

A dt A 

This equation, a first-order differential equation, describes how the exten­
sion or contraction x of the bellows changes with time when there is an input 
of a pressure PI' The pneumatic capacitance due to the change in volume of 
the container GI is pd VI dP2 and since V = Ax, G1 is pA dxldPz. But for the 
bellows P2A = kx, thus 

dx pAZ 

G1 = pA d(kxIA) = -k­

G2, the pneumatic capacitance due to the compressibility of the air, is 
VIRT = AxlRT. 

The following illustrates how, for the hydraulic system shown in 
Figure 10.16, relationships can be derived which describe how the heights 
of the liquids in the two containers will change with time. With this model 
inertance is neglected. 
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Flpre 10.16 Afluid system. Cross-sectional Cross-sectional 
area A area A 

. , 

;~-~ 

Container I is a capacitor and thus 

dp 
ql - qz = C1­

dt 

where P = h1pg and C1 = At/pg and so 

dh l 
ql - q2 = A1­

dt 

The rate at which liquid leaves the container q2 equals the rate at which it 
leaves the valve R1• Thus for the resistor, 

PI - Pz = RIq2 

The pressures are hIpg and hzpg. Thus 

(hI - h2)pg = RIqz 

Using the value of qz given by this equation and substituting it into the 
earlier equation gives 

(hI - hz)pg dh l 

ql - RI = AI"dt 


This equation describes how the height of the liquid in container I depends 
on the input rate of flow. 

For container 2 a similar set of equations can be derived. Thus for the 
capacitor C2, 

dp

q2 q3 = 
C2dt 

where p = hzpg and C2 = AJpg and so 

dh2 
q2 - q3 = Az"dt 

The rate at which liquid leaves the container q3 equals the rate at which it 
leaves the valve Rz.Thus for the resistor, 

Pz - 0 = Rzq3 

This assumes that the liquid exits into the atmosphere. Thus, using the value 
of q3 given by this equation ·and substituting it into the earlier equation gives 

hzpg dhz qz ---=Az-Rz dt 



237 10.5 THERMAL SYSTEM BUILDING BLOCKS 

10.5 

;7 

Substituting for q2 in this equation using the value given by the equation 
derived for the first container gives 

(hi - hz)pg hzpg dh2----"--"""'--"- - -- = Az-
R j dtRz 

This equation describes how the height of liquid in container 2 changes. 

There are only two basic building blocks for thermal systems: resistance and 
capacitance. There is a net flow of heat between two points if there is a tem­
perature difference between them. The electrical equivalent of this is that 
there is only a net current i between two points if there is a potential differ­
ence v between them, the relationship between the current and potential 
difference being i = viR, where R is the electrical resistance between the 
points. A similar relationship can be used to define thermal resistance R. 
If q is the rate offlow ofheat and (TI - Tz) the temperature difference, then 

Tz - Tl 
q=--­

R 

The value of the resistance depends on the mode of heat transfer. In the case 
of conduction· through a solid, for unidirectional conduction 

TI - Tz 
q = Ak-"--'::" 

L 

where A is the cross-sectional area of the material through which the heat is 
being conducted and L the length ofmaterial between the points at which the 
temperatures are TI and Tz; k is the thermal conductivity. Hence, with this 
mode of heat transfer, 

L 
R = Ak 

When the mode of heat transfer is convection, as with liquids and gases, then 

q = Ah(Tz T1) 

where A is the surface area across which there is the temperature difference 
and h is the coefficient ofheat transfer. Thus, with this mode of heat transfer, 

1 

R = Ah 


Thermal capacitance is a measure of the store of internal energy in a 
system. Thus, if the rate of flow ofheat into a system is ql and the rate of flow 
out is qz, then 

rate of change of internal energy = ql - qZ 

An increase in internal energy means an increase in temperature. Since 

internal energy change me X change in temperature 

where m is the mass and e the specific heat capacity, then 

rate of change of internal energy = me X rate of change of 
temperature 
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Thus 

dT 
ql - qz = mc­

dt 

where dT/dt is the rate of change of temperature. This equation can be 
written as 

dT 
qz= C­

dt 

where C is the thermal capacitance and so C = mc. Table lOA gives a 
summary of the thermal building blocks. 

Table 10.4 Thermal building 
Building block Describing equation Energy storedblocks. 

dT
Capacitance ql - q2 E= CT= Cdt 

" Tl - TzResistance q= R 

rlPre 10.17 A thermal 
system. 

_ Building up a model for a·thermal system 

Consider a thermometer at temperature T which has just been inserted into 
a liquid at temperature TL (Figure 10.17). 

If the thermal resistance to heat flow from the liquid to the thermometer 
is R, then 

TL - T 
q= 

R 

where q is the net rate of heat flow from liquid to thermometer. The thermal 
capacitance C of the thermometer is given by the equation 

dT 
ql - q2 = C­

dt 

Since there is only a net flow of heat from the liquid to the thermometer, 
ql = qand q2 = O. Thus 

dT
q=C­

dt 

Substituting this value of q in the earlier equation gives 

CdT = TL - T 
dt R 

Rearranging this equation gives 

dT 
RC-+ T= TL 

df 

This equation, a first-order differential equation, descnbes how the temperature 
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rIPre 10.18 Thermal 
system. 

indicated by the thermometer T will vary with time when the thermometer 
is inserted into a hot liquid. 

In the above thermal system the parameters have been considered to be 
lumped. This means, for example, that there has been assumed to be just one 
temperature for the thermometer and just one for the liquid, i.e. the temper­
atures are only functions of time and not position within a body. 

To illustrate the above consider Figure 10.18 which shows a thermal sys­
tem consisting of an electric fire in a room. The fire emits heat at the rate ql 
and the room loses heat at the rate q2' Assuming that the air in the room is at 
a uniform temperature T and that there is no heat storage in the walls of the 
room, derive an equation describing how the room temperature will change 
with time. 

If the air in the room has a thermal capacity C then 

dT 
ql - q2 = C­

dt 

If the temperature inside the room is T and that outside the room To then 

where R is the resistivity of the walls. Substituting for qz gives 

T To = CdT 
R dt 

Hence 

dT 
RC -;It + T = Rql + To 

A mathematical model of a system is a description of it in terms of equa­
tions relating inputs and outputs so that outputs can be predicted from 
inputs. 

Mechanical systems can be considered to be made up from masses, 
springs and dashpots, or moments of inertia, springs and rotational dampers 
if rotational. Electrical systems can be considered to be made up from resis­
tors, capacitors and inductors, hydraulic and pneumatic systems from resist­
ance, capacitance and inertance, and thermal systems from resistance and 
capacitance. 

There are many elements in mechanical, electrical, fluid and thermal sys­
tems which have similar behaviours. Thus, for example, mass in mechanical 
systems has similar properties to capacitance in electrical systems, capaci­
tance in fluid systems and ,capacitance in thermal systems. Table 10.5 shows 
a comparison of the elements in each of these systems and their defining 
equations. 
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Table 10.5 System elements. 

Mechanical Mechanical 
(translational) (rotational) Electrical Fluid (hydraulic) Thermal 

Element 

Equation 

Energy 

Element 

Equation 

Energy 

Element 

Equation 

Power 

Mass 

d2x 
P=m­

d~ 
dv

F=m­
dt 

I
E = -mV­

2 

Spring 

F= kx 

I p2
E=-­

2 k 

Dashpot 

do\'
P = c~ = tv 

dt 

p=« 

Moment of 
inertia 

d20 
T=I­

d~ 
dw

T=/­
dt 

I
E = -lui 

2 

Spring 

T= kO 

I T2 
E=-­

2 k 

Rotational 
damper 

dO
T=c-=cw

dt 

2p = cw

Capacitor 

dvc
dt 

I
E = -CV­

2 

Inductor 
di 

v= L­
dt 

1 .
E = -Li

2 

Resistor 

v
i= ­

R 

v2 
p=­

R 

Capacitor 

_ C d(P1 pi) 
q - dt 

E = '2I C(PI - hi 

Inertance 
dq

L­P dt 
I

E = -lq2
2 

Resistance 

PI - Pz 
q=-­

R 

1 2
P li(PI - Pz) 

Capacitor 

dT 
qI - q2 = c­

dt 

E= CT 

None 

Resistance 

Tl - Tz
q='-­

R 

10.1 	 Derive an equation relating the input, force P, with the output, displacement 
x, for the systems deScribed by Figure 10.19. \ 

rlgUre 10.19 Problem 10.1. 

(a) 	 (b) 

Figure 10.20 
Problem 10.3. 

10.2 Propose a model for the metal wheel of a railway carriage running on a metal 
track. 

10.3 Derive an equation relating the input angular displacement 8j with the out­
put angular displacement 80 for the rotational system shown in Figure 10.20. 

1 0.4 Propose a model for a stepped shaft (i.e. a shaft where there is a step change 
in diameter) used to rotate a mass and derive an equation relating the input 
torque and the angular rotation. You may neglect damping. 
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10.5 	 Derive the relationship between the output, the potential difference across 
the resistor R of VR, and the input v for the circuit shown in Figure 10.21 
which has a resistor in series with a capacitor. 

10.6 	 Derive the relationship between the output, the potential difference across 
the regigtar 1l of v.u and the input v for the series LCR circuit shown in 
Figure lO.22. 

c c L 

Figure 10.21 Problem 10.5. figure 10.22 Problem 10.6. Figure 10.23 Problem 10.7. 

10.7 	 Derive the relationship between the output, the potential difference across 
the capacitor C of vc, and the input v for the circuit shown in Figure 10.23. 

10.8 	 Derive the relationship between the height hz and time for the hydraulic 
system shown in Figure 10.24. Neglect inertance. 

Figure 10.24 CrosHectional Cross-sectional 

Problem 10.8. head supply 
Constant li'iOiiiiiilillllli;;;;iililiIltJ area A area A 

10.9 

10.10 

A hot object, capacitance C and temperature T, cools in a large room at tem­
perature Tr• If the thermal system has a resistance R, derive an equation 
describing how the temperature of the hot object changes with time and give 
an electrical analogue of the system. 

Figure 10.25 shows a thermal system involving two compartments, with one 
containing a heater. If the temperature of the compartment containing the 
heater is Tb the temperature of the other compartment Tz and the temper­
ature surrounding the compartments T3, develop equations describing how 

Figure 10.25 
Problem 10.10. 

c c 

liz 
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the temperatures TI and Tz will vary with time. All the walls of the contain­
ers have the same resistance and negligible capacitance. The two containers 
have the same capacitance C. 

10.11 	 Derive the differential equation relating the pressure input p to a diaphragm 
actuator (as in Figure 7.23) to the displacement x of the stem. 

10.12 	 Derive the differential equation for a motor driving a load through a gear 
system (Figure 10.26) which relates the angular displacement of the load 
with time. 

Figure 10.26 
Problein 10.12. 


